Source code for methylprep.models.sigset

# Lib
import logging
import pandas as pd
import numpy as np
# App
from ..models import (
    ArrayType,
    Channel,
    ProbeType,
)
from ..files import IdatDataset
from ..utils.progress_bar import * # checks environment and imports tqdm appropriately.
from collections import Counter


__all__ = ['SigSet', 'parse_sample_sheet_into_idat_datasets', 'RawMetaDataset']


LOGGER = logging.getLogger(__name__)

[docs]def get_array_type(idat_dataset_pairs): """ provide a list of idat_dataset_pairs and it will return the array type, confirming probe counts match in batch. """ array_types = {dataset['array_type'] for dataset in idat_dataset_pairs} if len(array_types) == 0: raise ValueError('could not identify array type from IDATs') elif len(array_types) != 1: raise ValueError('IDATs with varying array types') array_type = array_types.pop() return array_type
[docs]class RawMetaDataset(): """Wrapper for a sample and meta data, without its pair of raw IdatDataset values.""" def __init__(self, sample): self.sample = sample
[docs]def parse_sample_sheet_into_idat_datasets(sample_sheet, sample_name=None, from_s3=None, meta_only=False): """Generates a collection of IdatDatasets from samples in a sample sheet. Arguments: sample_sheet {SampleSheet} -- The SampleSheet from which the data originates. Keyword Arguments: sample_name {string} -- Optional: one sample to process from the sample_sheet. (default: {None}) from_s3 {zip_reader} -- pass in a S3ZipReader object to extract idat files from a zipfile hosted on s3. meta_only {True/False} -- doesn't read idat files, only parses the meta data about them. (RawMetaDataset is same as RawDataset but has no idat probe values stored in object, because not needed in pipeline) Raises: ValueError: If the number of probes between raw datasets differ. Returns: [RawDatasets] -- A list of idat data pairs, each a dict like {'green_idat': green_idat, 'red_idat': red_idat} """ # now idat_datasets is not a class, but just a list of dicts, with each dict being a pair of red_idat and green_idat Objects. if not sample_name: samples = sample_sheet.get_samples() elif type(sample_name) is list: samples = [ sample_sheet.get_sample(sample) for sample in sample_name ] else: samples = [sample_sheet.get_sample(sample_name)] LOGGER.info("Found sample in SampleSheet: {0}".format(sample_name)) #LOGGER.info(f'Reading {len(samples)} IDATs from sample sheet') if from_s3 and meta_only: parser = RawMetaDataset idat_datasets = [parser(sample) for sample in samples] elif from_s3 and not meta_only: #parser = RawDataset.from_sample_s3 zip_reader = from_s3 def parser(zip_reader, sample): green_filepath = sample.get_filepath('idat', Channel.GREEN) green_idat = IdatDataset(green_filepath, channel=Channel.GREEN) red_filepath = sample.get_filepath('idat', Channel.RED) red_idat = IdatDataset(red_filepath, channel=Channel.RED) return {'green_idat': green_idat, 'red_idat': red_idat, 'sample': sample} idat_datasets = [] for sample in tqdm(samples, total=len(samples), desc='Reading IDATs'): idat_datasets.append(parser(zip_reader, sample)) elif not from_s3 and not meta_only: #parser = RawDataset.from_sample def parser(sample): green_filepath = sample.get_filepath('idat', Channel.GREEN) green_idat = IdatDataset(green_filepath, channel=Channel.GREEN) red_filepath = sample.get_filepath('idat', Channel.RED) red_idat = IdatDataset(red_filepath, channel=Channel.RED) return {'green_idat': green_idat, 'red_idat': red_idat, 'sample': sample} idat_datasets = [] for sample in tqdm(samples, total=len(samples), desc='Reading IDATs'): idat_datasets.append(parser(sample)) if not meta_only: idat_datasets = list(idat_datasets) # tqdm objects are not subscriptable, not like a real list # ensure all idat files have same number of probes batch_probe_counts = set() counts_per_sample = Counter() for idx,dataset in enumerate(idat_datasets): snps_read = {dataset['green_idat'].n_snps_read, dataset['red_idat'].n_snps_read} if len(snps_read) > 1: raise ValueError('IDAT files have a varying number of probes (compared Grn to Red channel)') n_snps_read = snps_read.pop() batch_probe_counts.add(n_snps_read) counts_per_sample[n_snps_read] += 1 idat_datasets[idx]['array_type'] = ArrayType.from_probe_count(n_snps_read) if len(batch_probe_counts) != 1: array_types = Counter([dataset['array_type'] for dataset in idat_datasets]) LOGGER.warning(f"These IDATs have varying numbers of probes: {counts_per_sample.most_common()} for these array types: {array_types.most_common()}") LOGGER.warning(f"(Processing will drop any probes that are not found across all samples for a given array type.)") return idat_datasets
[docs]class SigSet(): """ I’m gonna try to create a fresh methylprep “SigSet” to replace our methylationDataset and RawDataset objects, which are redundant, and even have redundant functions within them. Part of why I have been frustrated/confused by our code. Central to the SeSAMe platform is the SigSet data structure, an S4 class with slots containing signals for six different classes of probes: [x] II - Type-II probes; [x] IR - Type-I Red channel probes; [x] IG - Type-I Grn channel probes; [x] oobG - Out-of-band Grn channel probes (matching Type-I Red channel probes in number); [x] oobR - Out-of-band Red channel probes (matching Type-I Grn channel probes in number); [x] ctrl_green, ctrl_red - control probes. [x] methylated, unmethylated, snp_methylated, snp_unmethylated [x] fg_green, fg_red (opposite of oobG and oobR) AKA ibG, ibR for in-band probes. - just tidying up how we access this stuff, and trying to stick to IlmnID everywhere because the illumina_id within IDAT files is no longer unique as a ref. - I checked again, and no other array breaks these rules. But sounds like Bret won’t stick to this pattern going forward with designs. So I suspect other software will break with new arrays, unless they rewrite for this too. - this combines every layer of objects between IdatDatasets and SampleDataContainers. - this avoids looping through probe subsets, instead referring to a lookup-dataframe of how these relate. - avoids probes.py probe_type is a derived label, not in manifest (I, II, SnpI, SnpII, control) """ __bg_corrected = False __minfi_noob = False # linear_dye applied __dye_bias_corrected = False __preprocessed = False # we found the SECRET DECODER RING! #name | data_channel | probe_address | probe_channel | probe_type | fg_green | fg_red | meth | unmeth | snp_meth | snp_unmeth # 'data_channel' refers to either the green_idat red_idat values; 'Color_Channel' + probe_address is used by type-I probes to refer to one of two measurements within that probe. df_columns=['name','data_channel','probe_address','Color_Channel','probe_type', 'fg_green', 'fg_red', 'meth', 'unmeth', 'snp_meth', 'snp_unmeth', 'foreground', 'snp', 'Infinium_Design_Type'] data=[ # in-band probes ['II-None-Green-Meth', 'GREEN', 'AddressA_ID', None, 'II', 1, 0, 1, 0, 0, 0, 1, 0, 'II'], ['IG-A-Unmeth', 'GREEN', 'AddressA_ID', 'Grn', 'I', 1, 0, 0, 1, 0, 0, 1, 0, 'I'], ['IG-B-Meth', 'GREEN', 'AddressB_ID', 'Grn', 'I', 1, 0, 1, 0, 0, 0, 1, 0, 'I'], ['II-None-Red-Unmeth', 'RED', 'AddressA_ID', None, 'II', 0, 1, 0, 1, 0, 0, 1, 0, 'II'], ['IR-A-Unmeth', 'RED', 'AddressA_ID', 'Red', 'I', 1, 0, 0, 1, 0, 0, 1, 0, 'I'], ['IR-B-Meth', 'RED', 'AddressB_ID', 'Red', 'I', 1, 0, 1, 0, 0, 0, 1, 0, 'I'], # in-band SNPS ['SnpII-None-Green-Meth', 'GREEN', 'AddressA_ID', None, 'SnpII', 1, 0, 0, 0, 1, 0, 1, 1, 'II'], ['SnpIG-A-Unmeth', 'GREEN', 'AddressA_ID', 'Grn', 'SnpI', 1, 0, 0, 0, 0, 1, 1, 1, 'I'], ['SnpIG-B-Meth', 'GREEN', 'AddressB_ID', 'Grn', 'SnpI', 1, 0, 0, 0, 1, 0, 1, 1, 'I'], ['SnpII-None-Red-Unmeth', 'RED', 'AddressA_ID', None, 'SnpII', 0, 1, 0, 0, 0, 1, 1, 1, 'II'], ['SnpIR-A-Unmeth', 'RED', 'AddressA_ID', 'Red', 'SnpI', 1, 0, 0, 0, 0, 1, 1, 1, 'I'], ['SnpIR-B-Meth', 'RED', 'AddressB_ID', 'Red', 'SnpI', 1, 0, 1, 0, 0, 0, 1, 1, 'I'], # oob subsets -- these should include Snp-oob probes, but they need to be addressed separately. ['oobG-Unmeth', 'GREEN', 'AddressA_ID', 'Red', 'I', 0, 0, 0, 1, 0, 0, 0, 0, 'I'], ['oobG-Meth', 'GREEN', 'AddressB_ID', 'Red', 'I', 0, 0, 1, 0, 0, 0, 0, 0, 'I'], ['oobR-Unmeth', 'RED', 'AddressA_ID', 'Grn', 'I', 0, 0, 0, 1, 0, 0, 0, 0, 'I'], ['oobR-Meth', 'RED', 'AddressB_ID', 'Grn', 'I', 0, 0, 1, 0, 0, 0, 0, 0, 'I'], ['SnpIG-oobG-Unmeth', 'GREEN', 'AddressA_ID', 'Red', 'SnpI', 0, 0, 0, 0, 0, 1, 0, 1, 'I'], ['SnpIG-oobG-Meth', 'GREEN', 'AddressB_ID', 'Red', 'SnpI', 0, 0, 0, 0, 1, 0, 0, 1, 'I'], ['SnpIR-oobR-Unmeth', 'RED', 'AddressA_ID', 'Grn', 'SnpI', 0, 0, 0, 0, 0, 1, 0, 1, 'I'], ['SnpIR-oobR-Meth', 'RED', 'AddressB_ID', 'Grn', 'SnpI', 0, 0, 0, 0, 1, 0, 0, 1, 'I']] idat_decoder = pd.DataFrame(data=data, columns=df_columns).set_index('name') # how to decode the idat into logical chunks for processing; sesame II/IG/IR includes snps by default; mprep separates snps from meth/unmeth/fg_red/fg_green subsets = { 'II': ['II-None-Green-Meth', 'II-None-Red-Unmeth', 'SnpII-None-Green-Meth', 'SnpII-None-Red-Unmeth'], 'IG': ['IG-A-Unmeth', 'IG-B-Meth', 'SnpIG-A-Unmeth', 'SnpIG-B-Meth'], 'IR': ['IR-A-Unmeth', 'IR-B-Meth', 'SnpIR-A-Unmeth', 'SnpIR-B-Meth'], 'oobG': ['oobG-Unmeth','oobG-Meth', 'SnpIG-oobG-Unmeth', 'SnpIG-oobG-Meth'], 'oobR': ['oobR-Unmeth','oobR-Meth', 'SnpIR-oobR-Unmeth', 'SnpIR-oobR-Meth'], 'methylated': ['II-None-Green-Meth', 'IG-B-Meth', 'IR-B-Meth', 'SnpII-None-Green-Meth', 'SnpIG-B-Meth', 'SnpIR-B-Meth'], 'unmethylated': ['II-None-Red-Unmeth', 'IG-A-Unmeth', 'IR-A-Unmeth', 'SnpII-None-Red-Unmeth', 'SnpIG-A-Unmeth', 'SnpIR-A-Unmeth'], 'snp_methylated': ['SnpII-None-Green-Meth', 'SnpIG-B-Meth', 'SnpIR-B-Meth'], 'snp_unmethylated': ['SnpII-None-Red-Unmeth', 'SnpIG-A-Unmeth', 'SnpIR-A-Unmeth'], #'fg_green': ['II-None-Green-Meth', 'IG-A-Unmeth', 'IG-B-Meth'], #'fg_red': ['II-None-Red-Unmeth', 'IR-A-Unmeth', 'IR-B-Meth'], # ibG is fg_green plus the SNPs 'ibG': ['II-None-Green-Meth', 'IG-A-Unmeth', 'IG-B-Meth', 'SnpIG-A-Unmeth', 'SnpIG-B-Meth', 'SnpII-None-Green-Meth'], 'ibR': ['II-None-Red-Unmeth', 'IR-A-Unmeth', 'IR-B-Meth', 'SnpIR-A-Unmeth', 'SnpIR-B-Meth', 'SnpII-None-Red-Unmeth'], # 'ctrl_green' and 'ctrl_red' are defined attributes below, because they use a separate manifest and addressing system. } # after __init__, SigSet will have class variables for each of the keys in subsets above. def __init__(self, sample, green_idat, red_idat, manifest, debug=False): """ green_idat has .probe_means and .meta as main functions and for extra info, use extra kwargs: red= m.files.IdatDataset('9247377093_R02C01_Red.idat', m.models.Channel.RED, verbose=True, std_dev=True, nbeads=True) """ self.debug = debug snps_read = {green_idat.n_snps_read, red_idat.n_snps_read} if len(snps_read) > 1: raise ValueError('IDAT files have a varying number of probes (comparing Grn to Red channel)') if (str(green_idat.channel) != 'Grn' or str(red_idat.channel) != 'Red'): raise ValueError("The IDAT files you supplied seem to be reversed. Check the order of your inputs to SigSet") self.n_snps_read = snps_read.pop() # DEBUG #self.array_type = ArrayType.from_probe_count(self.n_snps_read) # these next two should be unnecessary, because nothing should be reading idats downstream; use self.data_channel instead #self.green_idat = green_idat #self.red_idat = red_idat self.data_channel = {'GREEN': green_idat.probe_means, 'RED': red_idat.probe_means} # indexed to illumina_ids # illumina_ids are all II means, plus a stacked list of type-I-AddressA and type-I-AddressB means self.sample = sample self.man = manifest.data_frame # relevant columns are 'probe_type', AddressA_ID, AddressB_ID, index, Color_Channel self.man = self.man[ ~self.man.index.str.startswith('rs') ] # snp_man covers these self.snp_man = manifest.snp_data_frame.set_index('IlmnID') self.ctl_man = manifest.control_data_frame self.ctrl_green = self.ctl_man.merge( green_idat.probe_means.astype('float32'), how='inner', left_index=True, right_index=True) self.ctrl_red = self.ctl_man.merge( red_idat.probe_means.astype('float32'), how='inner', left_index=True, right_index=True) self.array_type = manifest.array_type if self.array_type == ArrayType.ILLUMINA_MOUSE: self.mouse_probes_mask = ( (self.man['design'] == 'Multi') | (self.man['design'] == 'Random') ) else: self.mouse_probes_mask = None self.address_code = {'AddressA_ID':'A', 'AddressB_ID':'B', 'A':'AddressA_ID', 'B':'AddressB_ID'} """ ## SigSet EPIC ## - @IG probes: 49989 - 332 4145 70 7094 599 2958 ... ## - @IR probes: 92294 - 183 8040 1949 6152 833 89 ... ## - @II probes: 724612 - 6543 1596 3133 1011 3035 2837 ... ## - @oobG probes: 92294 - 138 277 107 218 232 80 ... ## - @oobR probes: 49989 - 1013 150 81 910 448 183 ... ## - @ctl probes: 635 ... ## - @pval: 866895 - 0.005141179 0.04914081 0.002757492 ... SigSet 450k @II 350076 ................... methylated 485512 @IG 46298 ... oobR 46298 ..... unmethylated 485512 @IR 89203 ... oobG 89203 ..... snp_methylated 65 .............................. snp_unmethylated 65 fg_green 396325 |vs| ibG 396374 (incl 40 + 9 SNPs) --(flattened)--> 442672 fg_red 439223 |vs| ibR 439279 (incl 40 + 16 SNPs) --(flattened)--> 528482 """ if debug: print('DEBUG comparing [manifest probe_IDs vs idat probe_means]') for subset, decoder_parts in self.subsets.items(): data_frames = {} for part in decoder_parts: i = self.idat_decoder.loc[part] ref = self.snp_man.copy() if i['snp'] == 1 else self.man.copy() # can't merge on NAType, so filling in -1s. No probe_means illumina_ids will match -1 # using -1 instead of NaN throughout solves a lot of problems! if ref['AddressA_ID'].isna().sum() > 0: ref.loc[:, 'AddressA_ID'].fillna(-1, inplace=True) if ref['AddressB_ID'].isna().sum() > 0: #ref.loc[ (ref['AddressB_ID'].isnull()), 'AddressB_ID'] = -1 ref.loc[:, 'AddressB_ID'].fillna(-1, inplace=True) # and pandas won't compare NaN to NaN... so need this extra color_channel filter color_channel = ref['Color_Channel'].isna() if i['Color_Channel'] is None else (ref['Color_Channel'] == i['Color_Channel']) probe_ids = ref[ (ref['Infinium_Design_Type'] == i['Infinium_Design_Type']) & (color_channel) ][i['probe_address']] probe_means = self.data_channel[i['data_channel']] # starts with all 361821 mouse probes here, keyed to illumina_ids probe_means = probe_means.reset_index() # index is Nth row; illumina_id now a column that can be redundant probe_means = probe_means[ probe_means.illumina_id.isin(probe_ids) ] if len(probe_ids) == 0: LOGGER.error(f"SigSet.init(): no probes matched for {subset}:{part}") #************ DEBUG ***********# if debug: #print(f"DEBUG duplicated probe_ids (from manifest): {len( probe_ids[probe_ids.duplicated(keep=False)] )}") duped = len( probe_ids[probe_ids.duplicated(keep=False)] ) dupe_msg = f"-- {duped} multiprobes" if duped != 0 else '' means_msg = probe_means.shape if probe_means.shape[0] != probe_ids.shape[0] else 'OK' print(f"DEBUG {subset} -- {part}: {probe_ids.shape} -- {means_msg} {dupe_msg}") # 2021-11-29: confirmed that all 361821 mouse means in IDAT DO get read. 4622 of these are control probes, but # methylprep only uses 633 of them (matching 635 EPIC probes for QC). # 919 of these probes are duplicates having the same illumina_id but different IlmnIDs (TC11, TC12, TC13 etc..) that dont merge right. #if subset == 'methylated' and part == 'IR-B-Meth': #************ DEBUG ***********# # merge and establish IlmnIDs from illumina_ids here ref_probe_names = ref[['AddressA_ID', 'AddressB_ID']].reset_index() probe_subset_data = ref_probe_names.merge(probe_means, how='inner', left_on=i['probe_address'], right_on='illumina_id') probe_subset_data['used'] = self.address_code[i['probe_address']] mean_col_name = 'Meth' if 'Meth' in part else 'Unmeth' probe_subset_data = probe_subset_data.rename(columns={'mean_value': mean_col_name}) probe_subset_data = probe_subset_data.drop(['illumina_id'], axis='columns') # looks like duplicated probes DO have different mean_values, so it works. nothing is lost. #if (probe_subset_data.IlmnID.duplicated().sum() > 0 # or probe_subset_data.IlmnID.isna().sum() > 0 # or probe_subset_data[mean_col_name].isna().sum() > 0 # or probe_subset_data['AddressA_ID'].duplicated().sum() > 0 # or ('II' not in part and probe_subset_data['AddressB_ID'].duplicated().sum() > 0)): # print('ERROR') # import pdb;pdb.set_trace() probe_subset_data = probe_subset_data.set_index('IlmnID') data_frames[part] = probe_subset_data try: # here, put the meth and unmeth parts into separate columns as we combine meth_parts = [frame for frame in data_frames.values() if 'Meth' in frame.columns] unmeth_parts = [frame for frame in data_frames.values() if 'Unmeth' in frame.columns] if unmeth_parts == []: data_frame = pd.concat(meth_parts) data_frame['Unmeth'] = None elif meth_parts == []: data_frame = pd.concat(unmeth_parts) data_frame['Meth'] = None else: data_frame = pd.concat(meth_parts) # need to keep NaNs in Meth / Unmeth when merging, so 'outer' test_data_frame = data_frame.merge(pd.concat(unmeth_parts)[['Unmeth']], left_index=True, right_index=True, how='inner') data_frame = data_frame.merge(pd.concat(unmeth_parts)[['Unmeth']], left_index=True, right_index=True, how='outer') #if len(data_frame) != len(test_data_frame): # print(f"---- DEBUG {subset} {data_frame.shape} vs {test_data_frame.shape}") # -- this explained by having NaNs in either Meth/Unmeth channel if debug: print(subset, len(data_frame)) setattr(self, subset, data_frame) except Exception as e: raise Exception(f"SigSet: {e}") self.starting_probe_counts = {subset: getattr(self, subset).shape[0] for subset in self.subsets.keys()} # DEBUGGING self.detect_and_drop_duplicates() if debug: self.check_for_probe_loss() # originally was `set_bg_corrected` from MethylationDataset | called by NOOB
[docs] def update_probe_means(self, noob_green, noob_red, red_factor=None): """ pass in two dataframes (green and red) with IlmnIDs in index and a 'bg_corrected' column in each. because __init__ has created each subset as a dataframe with IlmnID in index, this matches to index. and uses decoder to parse whether 'Meth' or 'Unmeth' values get updated. upstream: container.sigset.update_probe_means(noob_green, noob_red) replaces 'bg_corrected' column with 'noob_Meth' or 'noob_Unmeth' column. does NOT update ctrl_red or ctrl_green; these are updated within the NOOB function because structually different. """ for probe_subset, decoder_parts in self.subsets.items(): if self.debug: print(f'--- probe_subset {probe_subset} ---') df = getattr(self, probe_subset) # contains multiple parts in one dataframe, so need to update with logic each time df = df.assign(noob_Meth=None) df['noob_Meth'] = df['noob_Meth'].astype('float32') df = df.assign(noob_Unmeth=None) df['noob_Unmeth'] = df['noob_Unmeth'].astype('float32') # need to assign new values to red and green channels separately, and decode into meth/unmeth column for part in decoder_parts: try: #**** NOOB is matching using tango A/B IDs upstream, must change. ****# # assuming probes are passed in indexed to IlmnIDs, we can merge/update whatever matches i = self.idat_decoder.loc[part] if i['meth'] == 1: column = 'Meth' bg_column = 'noob_Meth' if i['unmeth'] == 1: column = 'Unmeth' bg_column = 'noob_Unmeth' if i['snp_meth'] == 1: column = 'Meth' bg_column = 'noob_Meth' if i['snp_unmeth'] == 1: column = 'Unmeth' bg_column = 'noob_Unmeth' if i['data_channel'] == 'GREEN': updated = noob_green.copy() elif i['data_channel'] == 'RED': updated = noob_red.copy() if red_factor is not None: # NOTE: this changes None to NaN and dtype is Object updated['bg_corrected'] = (updated['bg_corrected'] * red_factor).round(0) # what IlmnIDs are in this subset? ref = self.snp_man if i['snp'] == 1 else self.man # and pandas won't compare NaN to NaN... so need this extra color_channel filter color_channel = ref['Color_Channel'].isna() if i['Color_Channel'] is None else ref['Color_Channel'] == i['Color_Channel'] IlmnIDs = ref[ (ref['Infinium_Design_Type'] == i['Infinium_Design_Type']) & (color_channel) ].index # NOT SURE ABOUT THIS HACK. IT WORKS, but why? if probe_subset in ('oobG','oobR'): # swap the data_channels updated = noob_red.copy() if probe_subset == 'oobG' else noob_green.copy() # ... and optionally, grab the IlmnIDs from df and match them instead. Wasn't necessary. <-- this is prone to mismatching across probe_subsets. #IlmnIDs = set(list(df.sort_index().index)) & set(list(updated['IlmnID'])) # use update; cannot merge if the IlmnIDs overlap, to avoid NaNs and bg_corrected_x/_y cols updated = updated.rename(columns={'bg_corrected':bg_column}) updated = updated.loc[ updated['IlmnID'].isin(IlmnIDs)] # update() matches on IlmnID index, but noob_green/red have multiple meth/unmeth values per IlmnID so have to split it apart. if updated['IlmnID'].duplicated().sum() != 0: #raise AssertionError(f"{probe_subset} -- {part} contains duplicate IlmnIDs, after filtering") # --- there are duplicate IlmnIDs here, so can't index to it until I split the M and U derived parts out if 'Meth' in part: used = 'M' elif 'Unmeth' in part: used = 'U' else: raise ValueError(f"Not sure how to read {part}; is it Meth or Unmeth?") updated = updated.loc[ updated['used'] == used ] if updated['IlmnID'].duplicated().sum() != 0: raise AssertionError(f"{probe_subset} -- {part} -- {used} contains duplicate IlmnIDs, after filtering twice") updated = updated.set_index('IlmnID') debug_pre = df[bg_column].isna().sum() df.update(updated[[bg_column]]) debug_post = df[bg_column].isna().sum() num_updated = debug_pre - debug_post if self.debug: print(f"{part} {df.shape[0]} (+{num_updated})") # overwrite! setattr(self, probe_subset, df) except Exception as e: print(f"**** Sigset: error in update_probe_means: {e} ***") if self.starting_probe_counts.get(probe_subset) != getattr(self, probe_subset).shape[0]: if self.debug: LOGGER.warning(f"Update probes: {probe_subset} count changed from {self.starting_probe_counts.get(probe_subset)} to {getattr(self, probe_subset).shape[0]}") self.__preprocessed = True # applied by set_noob self.__bg_corrected = True self.__minfi_noob = False self.__linear_dye = True if red_factor is not None else False
""" # from raw_dataset; may no longer be needed, but kept for testing against new approach 2021 def get_oob_controls(self, green_idat, red_idat, manifest, include_rs=True): ''' Out-of-bound controls are the mean intensity values for the channel in the opposite channel's probes (IG oob and IR oob) .. todo:: TEST -- does this give same output as SigSet.oobG and oobR? ''' param_sets = [ {'channel': Channel.RED, 'idat': green_idat, 'manifest': manifest}, {'channel': Channel.GREEN, 'idat': red_idat, 'manifest': manifest}, ] for channel_params in param_sets: channel = channel_params['channel'] idat_dataset = channel_params['idat'] manifest = channel_params['manifest'] probe_means = idat_dataset.probe_means # index matches AddressA_ID or AddressB_ID, depending on RED/GREEN channel probes = manifest.get_probe_details( probe_type=ProbeType.ONE, # returns IR or IG cgxxxx probes only channel=channel, )[['AddressA_ID', 'AddressB_ID']] if include_rs: snp_probes = manifest.get_probe_details( probe_type=ProbeType.SNP_ONE, channel=channel, )[['AddressA_ID', 'AddressB_ID']] probes = pd.concat([probes, snp_probes]) if channel == Channel.RED: oobG = probes.merge( probe_means, # green channel X AddresB (meth) channel how='inner', left_on='AddressB_ID', right_index=True, suffixes=(False, False), ).rename(columns={'mean_value': 'Meth'}) oobG = oobG.merge( probe_means, # green channel X AddresA (unmeth) channel how='inner', left_on='AddressA_ID', right_index=True, suffixes=(False, False), ).rename(columns={'mean_value': 'Unmeth'}).sort_values('IlmnID') oobG.drop(['AddressA_ID', 'AddressB_ID'], axis=1) if channel == Channel.GREEN: oobR = probes.merge( probe_means, # red channel X AddressB for (meth) how='inner', left_on='AddressB_ID', right_index=True, suffixes=(False, False), ).rename(columns={'mean_value': 'Meth'}).sort_values('IlmnID') oobR = oobR.merge( probe_means, # red channel X AddressA for (unmeth) how='inner', left_on='AddressA_ID', right_index=True, suffixes=(False, False), ).rename(columns={'mean_value': 'Unmeth'}) oobR.drop(['AddressA_ID', 'AddressB_ID'], axis=1) return (oobG.sort_index(), oobR.sort_index()) """ # from raw_dataset def filter_oob_probes(self, channel, manifest, idat_dataset, include_rs=True): raise KeyError("filter_oob_probes replaced by (is part of) SigSet.get_oob_controls in v1.5+") # from MethylationDataset | called by self.set_bg_corrected for each probe subset | now part of set_bg_corrected # from MethylationDataset | now part of update_probe_means
[docs] def set_noob(self, red_factor): """ same method as update_probe_means, but simply applies a linear correction to all RED channel values """ #update_probe_means(self, noob_green, noob_red, red_factor) raise KeyError("set_noob replaced by update_probe_means in v1.5+")
[docs] def detect_and_drop_duplicates(self): """ as of v1.5.0, mouse manifest includes a few probes that cause duplicate values, and breaks processing. So this removes them. About 5 probes in all. Note: This runs during SigSet__init__, and might fail if any of these probes are affected by inter_type_I_probe_switch(), which theoretically should never happen in mouse. But infer-probes affects the idat probe_means directly, and runs before SigSet is created in SampleDataContainer, to avoid double-reading confusion. """ probe_count = 0 # (1) look for dupes within a subset; mouse.methylated has 2 to drop for subset in self.subsets: this = getattr(self, subset) if this.index.duplicated().sum() > 0: pre = this.index.duplicated().sum() this = this.loc[ ~this.index.duplicated() ] setattr(self, subset, this) this = getattr(self, subset) probe_count += pre if self.debug: LOGGER.info(f"Dropped duplicate probes from SigSet.{subset}: {pre} --> {this.index.duplicated().sum()}") # (2) look between paired subsets; the index probe names should match exactly. # but if idat probe_means is missing for one or the other (AddressA_ID / AddressB_ID error?) # drop these. mouse has 3 to drop. matched_sets = [ ('methylated','unmethylated') ] # either remove the mismatched ones, or add in missing values to other datasets (assume min fluor of 1.0) for partA,partB in matched_sets: if set(getattr(self, partA).index) - set(getattr(self, partB).index) != set(): if self.debug: LOGGER.info(f"mismatched probes ({partA} - {partB}): {set(getattr(self, partA).index) - set(getattr(self, partB).index)}") this = getattr(self, partA) mismatched = list(set(getattr(self, partA).index) - set(getattr(self, partB).index)) this = this.loc[ ~this.index.isin(mismatched) ] setattr(self, partA, this) if set(getattr(self, partB).index) - set(getattr(self, partA).index) != set(): probe_count += len(set(getattr(self, partB).index) - set(getattr(self, partA).index)) if self.debug: LOGGER.info(f"mismatched probes ({partB} - {partA}): {set(getattr(self, partB).index) - set(getattr(self, partA).index)}") this = getattr(self, partB) mismatched = list(set(getattr(self, partB).index) - set(getattr(self, partA).index)) this = this.loc[ ~this.index.isin(mismatched) ] setattr(self, partB, this)
[docs] def check_for_probe_loss(self, stage=''): """Debugger runs this during processing to see where mouse probes go missing or get duplicated.""" if stage != '' and self.debug: LOGGER.info(f"[{stage}]") for subset in self.subsets: if getattr(self, subset).index.duplicated().sum() > 0: if self.debug: LOGGER.info(f"[ {getattr(self, subset).index.duplicated().sum()} duplicate probes on SigSet.{subset} ]") if getattr(self, subset).shape[0] != self.starting_probe_counts[subset]: if self.debug: count_lost = self.starting_probe_counts[subset] - getattr(self, subset).shape[0] LOGGER.info(f"[ {count_lost} probes lost from SigSet.{subset} ]")